

Recovery of Tungsten, Niobium and Tantalum occurring as byproducts in mining and processing waste streams

TARANTULA CLUSTERING EVENT

Social License to Operate (SLO) in mining sector and LCA methodologies for (re)processing of low-grade primary and secondary resources 19th April 2023

The TARANTULA project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 821159 - <u>https://h2020-tarantula.eu/</u>

2 The TARANTULA project

Challenge: exploit potential of W, Nb, and Ta entrapped in complex low-grade resources within EU territory.

TARANTULA

"Recovery of Tungsten, Niobium and Tantalum occurring as by-products in mining and processing waste streams"

Grant agreement ID: 821159

Coordinator: TECNALIA (Spain)

16 European consortium partners (companies, industry associations, research institutions and universities) **covering the full value chain**.

tarantula

TARANTULA work plan

5

6 LCA of individual technologies

The objective of the GA is to evaluate the environmental and economic impact of the different technologies developed in the project.

tarantula

For this purpose, a questionnaire was developed by WP6 partners.

tecnəliə) təşərəş	idener INERCO 🗞	Questionnaire for data collection
Questionnaire completed by	. <u> </u>	
Organisation:		
Filling date:	VP3	
	VP4 (extraction)	
	\VP4 (separation)	
Pattner logo:		
		WP3 - Pretreatment
		WP4 - Extraction
		WP4 - Separation
		WP5 - M/MO production

Information about TARANTULA processes: energy consumption, materials needed, waste generated, personnel costs, emissions and equipment.

Review of feedstock availability in the EU to define a new reference unit for data collection to better calculate the environmental and economic impact of TARANTULA technologies. The functional unit was used to represent the final results of each technology.

	Reference unit	Functional unit
Pre-concentration technologies (WP3)	5.000 ton/year of tailings as output	1 kg of concentrates produced
Extraction technologies (WP4)	5.000 ton/year of tailings as input	1 kg of metal extracted
Separation technologies (WP4)	5.000 ton/year of tailings as input	1 kg of metal oxide produced
Metal production technologies (WP5)	1 kg of metal production	Production/deposition of 1 kg of metal

Modelling framework: attributional modelling.

System boundaries: cradle to gate (from raw materials acquisition to final product production. Distribution, use and EOL management phases of Tungsten, Tantalum and Niobium metal have been excluded.

<u>Allocation rules</u>: whenever subdivision of unit processes was not possible, mass allocation was used for assigning the environmental and economic impacts when several metals were recovered together.

<u>Data quality</u>: data accuracy, geographical representativeness, temporal representativeness and dataset representativeness were the parameters evaluated in the study, using a score from 1 to 3 (1 means highest quality).

Software and databases: SimaPro v9 and Ecoinvent v3.7.

Larantula

The environmental impact categories included in the document "Suggestions for updating the Product Environmental Footprint (PEF) method" (Zampori and Pant, 2019) were used.

ENVIRONMENTAL CATEGORIES								
Climate change	CC	kg CO2 eq	Eutrophication freshwater	EF	kg P eq			
Ozone depletion	ODP	kg CFC-11 eq	Eutrophication marine	EM	kg N eq			
Ionising radiation, HH	IR	kBq U-235 eq	Eutrophication terrestrial	ET	mol N eq			
Photochemical ozone formation, HH	POF	Kg NMVOC eq	Ecotoxicity freshwater	ECF	CTUe			
Respiratory inorganics	RI	disease inc.	Land use	LU	Pt			
Non-cancer human health effects	NCHH	CTUh	Water scarcity	WS	m3 depriv.			
Cancer human health effects	СНН	CTUh	Resource use, energy carriers	RUEC	MJ			
Acidification terrestrial and freshwater	ATF	mol H+ eq	Resource use, minerals and metals	RUMM	kg Sb eq			

ECONOMIC INDICATORS						
Materials cost	€	Labour costs	€			
Energy costs	€	End of life costs	€			

Impact assessment and interpretation

10

Chemical 1

Energy 3

ENVIRONMENTAL CATEGORIES

■ Chemical 1 ■ Chemical 2 ■ Chemical 3 ■ Energy 1 ■ Energy 2 ■ Energy 3 ■ Waste 1 ■ Waste 1

ECONOMIC RESULTS

Results given for every metal that is extracted in the process:

- Results for the 16 environmental impact categories included in the study.
- Aggregated results using PEF normalization and weighting factors.
- Aggregated results for the economic assessment.

Interpretation of the results in order to identify the main environmental and economic hotspots:

tarantula

- For most processes, chemical consumption is the main environmental and economic aspect.
- For some processes, energy is the main environmental aspect. ٠
- For some processes, waste treatment is the main environmental aspect.

Solid-liquid factor is a critical factor for WP4 technologies, as this implies that more chemicals are needed and more waste will be generated.

User-friendly tool

Inputs and outputs selection:

- Energy
- Materials
- Transport
- Emissions
- Wastes
- Personnel
- Product

Type of experimental data needed:

- kWh of energy consumed
- kg of chemicals needed
- Quantity of wastes generated
- Etc.

Methodological approach:

- Hotspots assessment (quantitative results are provided though).
- Mass allocation to separate impacts between the different co-products.
- No equipment included, E-LCC focused on operational costs.

tarantula

Life Cycle Inventory

Category	Input/output	Unit	Vatue C	ost per unit Reusability	Comments
Energy consumption	Electricity (RER)	kWh	2,50E+05	0.10 €	
Energy consumption	Heat, from diesel	MJ	1,20E+04	0,30 €	
Energy consumption		#N/D			
Energy consumption		#N/D			
Energy consumption		#N/D			
Material use	Acetic acid	¥g.	3,60E+05	5.00 C	
Material use	Calcium chioride	kg:	5,00E+03	1,50 €	
Vaterial use	Ethylene glyzoi	84	8,90E+03	3,00 €	
Material use	Nitric acid	kg	2.00E+05	1.00 €	
Material use		#N/D		2022/00	
Material use		" HN/D			
Moterial use		#N/D			
Material use		#N/D			
Material use		#N/D			
Material use		#N/D			
Material use		#N/D			
Material une		* mi/D			
Material ura		# #N/D			
Material use		F 100/0			
Noteriel use		EN/O			
Material use	1.000	#N/D	1.1.17.25		
Transport	TOUA	them.	1,146905		
Transport		#N/D			
Transport		#N/D			
Transport		#N/D			
Transport.	a second second second	#N/D			
Emissions to eir	CO2 (air emissions)	¥g.	4,005+03		
Emissions to air	N2 (air emissions)	kg.	5,00E+02		
Emissions to air		HN/D			
Emissions to air		#N/D			
Emissions to air		#N/D			
Waste generation	Solid waste (inert)	kg	6,00E+03	0.02 €	
Waste generation	Liquid aqueous waste	m3	1,508+02	10,00 €	
Weste generation	Liquid organic waste	kg	9,008+04	0,14 €	
Waste generation		MN/D			
Weste generation		MN/D			
Waste generation		MN/D			
Waste generation		WN/D			
Waste prneration		MN/D			
Weste generation		WN/D			
abour hours	Person A	hours	1.805+03	50,00 ¢	
abour hours	Person 8	hours	3.605+03	25.00 €	
Labour hours	Person C	hours	CONTRACTOR .		
labour hours	Person D	hours			
Products	Nb recovered	kg			
Departments	Ta recovered	in the	1000		
Denducts	W second	1	1005.000		
CONTRACTOR OF THE OWNER	THE LECOVERED	200	A LOUIS PLANE		

tarantula

Calculate results for Nb

Calculate results for Ta

Calculate results for W

Delete LCI sheet

User-friendly tool

Larantula

Results and interpretation

		GWP	ODP	IR
		kg CO2 eq	kg CFC11 eq	kBq U-235 eq
1. Characterization	TOTAL RESULTS	4,95E+03	6,85E-04	7,35E+02
for 1 kg of W	Energy consumption	3,79E+02	2,97E-05	2,11E+02
	Material use	3,89E+03	6,27E-04	5,15E+02
	Transport	6,21E+01	1,43E-05	4,61E+00
	Emissions to air	1,33E+01	0,00E+00	0,00E+00
	Waste generation	6,06E+02	1,46E-05	4,15E+00
	Labour hours	0,00E+00	0,00E+00	0,00E+00

		GWP	ODP	IR
2. Normalization	TOTAL RESULTS	6,38E-01	2,94E-02	1,74E-01
for 1 kg of W	Energy consumption	4,88E-02	1,27E-03	5,01E-02
	Material use	5,02E-01	2,68E-02	1,22E-01
	Transport	8,01E-03	6,11E-04	1,09E-03
	Emissions to air	1,72E-03	0,00E+00	0,00E+00
	Waste generation	7,81E-02	6,26E-04	9,83E-04
	Labour hours	0,00E+00	0,00E+00	0,00E+00

	Environmental impact	Economic impact	
	Pt		€
TOTAL RESULTS	4,13E-01	€	7.513,40
Energy consumption	4,11E-02	€	95,33
Material use	3,43E-01	€	6.770,67
Transport	5,31E-03	€	-
Emissions to air	3,62E-04	€	-
Waste generation	2,30E-02	€	47,40
Labour hours	0,00E+00	€	600,00

		GWP	ODP	IR
		kg CO2 eq	kg CFC11 eq	kBq U-235 eq
otspots	1	Nitric acid	Acetic acid	Acetic acid
	2	Acetic acid	Nitric acid	Electricity (RER)
	3	Liquid organic waste	Electricity (RER)	Nitric acid
		Pt	£	
	1	Acetic acid	Acetic acid	
	2	Nitric acid	Nitric acid	
	3	Electricity (RER)	Person A	

4. Main I

tarantula

Results given for every metal that is extracted in the process. Results for 16 environmental impact categories (including normalization and weighting) and 4 economic indicators.

The three main hotspots for every impact category and economic indicator are identified in order to allow the technical partners to optimise their process.

Transport costs are assumed to be included in the material use costs and externalities such as emissions have not be considered in the assessment.

3. Weighting

for 1 kg of W

13 LCA of production routes

The objective of the GA is to select the most promising flowsheet considering environmental and economic aspects.

The production routes in TARANTULA extract W, Ta and Nb from the different feedstocks and convert them into metals. The route must work for the different feedstock in the project.

tarantula

EEA ranking

**Unit vector = normalized vector magnitude

 $|\mathbf{v}| = \sqrt{x^2 + y^2}$ Process A Process B Process C LCA RESULTS Process A Process B Process C 1,65E-05 Abiotic depletion kg Sb eq/kg 2,00E-05 7,03E-06 0,74 0,62 0,26 Abiotic depletion (fossil fuels) 8,06E+00 1,20E+01 4,91E+00 MJ/kg 0,53 0,79 0,32 Global warming (GWP100a) kg CO₂ eq/kg 5,88E-01 9,81E-01 1,20E-01 0,51 0,85 0,10 Ozone layer depletion (ODP) kg CFC-11 eq/kg 0,98 0,03 3,95E-07 8,59E-08 1,12E-08 0,21 3,84E-04 Photochemical oxidation kg C₂H₄ eq/kg 1,80E-04 7,48E-05 0,42 0,17 0,89 Acidification kg SO₂ eq/kg 5,31E-03 9,68E-03 0,36 0,82 4,29E-03 0,45 Eutrophication kg PO_4^{3-} eq/kg 1,63E-03 1,50E-03 2,39E-04 0,73 0,67 0,11

*Geometric aggregation: is a mean or average, which indicates the central tendency or typical value of a set of numbers by using the product of their values

tarantula

 LCC RESULTS
 Process A
 Process B
 Process C
 Process A
 Process C
 Values to calculate eco-efficiency

 Economic benefit
 \in /kg 2
 10
 5
 0,18 0,88 0,44 \rightarrow Values to calculate eco-efficiency

EEA ranking

(II) Eco-efficiency index

utarantula

MCDA ranking

****Unit vector =** normalized vector magnitude

$\left|\mathbf{v}\right| = \sqrt{x^2 + y^2}$

LCA RESULTS		Process A	Process B	Process C		Process A	Process B	Process C		Weight
Abiotic depletion	kg Sb eq/kg	2,00E-05	1,65E-05	7,03E-06		0,74	0,62	0,26		10%
Abiotic depletion (fossil fuels)	MJ/kg	8,06E+00	1,20E+01	4,91E+00	\rightarrow	0,53	0,79	0,32	\rightarrow	15%
Global warming (GWP100a)	kg CO2 eq/kg	5,88E-01	9,81E-01	1,20E-01		0,51	0,85	0,10		40%
Ozone layer depletion (ODP)	kg CFC-11 eq/kg	3,95E-07	8,59E-08	1,12E-08	\rightarrow	0,98	0,21	0,03	\rightarrow	5%
Photochemical oxidation	kg C ₂ H ₄ eq/kg	1,80E-04	7,48E-05	3,84E-04		0,42	0,17	0,89		10%
Acidification	kg SO ₂ eq/kg	4,29E-03	5,31E-03	9,68E-03	\rightarrow	0,36	0,45	0,82	\rightarrow	10%
Eutrophication	kg PO43- eq/kg	1,63E-03	1,50E-03	2,39E-04		0,73	0,67	0,11		10%

Weights can be changed to show different points of view

MCDA ranking

The chosen alternative should have the shortest geometric distance from the positive ideal solution and the longest geometric distance from the negative ideal solution:

the worst option

Total geometric $S_{i}^{+} + S_{i}^{-}$ distance

	Process A	Process B	Process C				
Si⁺	0,10	0,39	0,14				
Si	0,36	0,05	0,27				
Si⁺ + Si⁻	0,46	0,43	0,41				
Closeness coeficient (CC) = $\frac{S_i^+}{(S_i^+ + S_i^-)}$ Process A Process B Process C							
СС	0.79	0.10	0.66				

(I)

(I) **MCDA** ranking

Identification of the best and worst option (min. and max. values)

LCA RESULTS		Process A	Process B	Process C
Abiotic depletion	kg Sb eq/kg	2,00E-05	1,65E-05	7,03E-06
Abiotic depletion (fossil fuels)	MJ/kg	8,06E+00	1,20E+01	4,91E+00
Global warming (GWP100a)	kg CO ₂ eq/kg	5,88E-01	9,81E-01	1,20E-01
Ozone layer depletion (ODP)	kg CFC-11 eq/kg	3,95E-07	8,59E-08	1,12E-08
Photochemical oxidation	kg C ₂ H ₄ eq/kg	1,80E-04	7,48E-05	3,84E-04
Acidification	kg SO ₂ eq/kg	4,29E-03	5,31E-03	9,68E-03
Eutrophication	kg PO4 ³⁻ eq/kg	1,63E-03	1,50E-03	2,39E-04

LCC RESULTS		Process A	Process B	Process C
Economic benefit	€/kg	2	10	5

https://h2020-tarantula.eu

The TARANTULA project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 821159 - <u>https://h2020-tarantula.eu/</u>