PASSENGER Project: LCA methodologies for the conventional permanent magnets production processes

- Business Development Manager
- PhD in Material Science
- Field of expertise: circular economy

<u>sakkas@mnlt.eu</u>

www.mnlt.eu

MNLT INNOVATIONS P.C.

NAME: MNLT INNOVATIONS P.C.
CATEGORY: Small-Medium Enterprise (SME)
OFFICE BASE: Kifisias 125-127, 11524 Athens, Greece
ESTABLISHMENT: 2018

SERVICES

- Sustainability Studies (LCA/LCC) in the fields of material science, catalysis, recycling and circular economy of critical raw materials, hydrogen technologies and geo/building materials.
- Specializes in Innovation Business Development and Planning
- Provides business development services to innovative organizations and private companies for helping them to create robust and sustainable businesses.

BUSINESS DEVELOPMENT

ATERIALS SOURCING AND EXPLOITATION

PRODUCT/PROCESS AND DEVELOPMENT LIFE CYCLE ASSESSMENT/LIFE CYCLE COST

(NOVEL) PRODUCTS COMMERCIALISATION

TECHNOLOGICAL SUPPORT AND MONITORING

Europe's dependence on critical and scarce raw materials for permanent magnets

•The extraction and refining of rare earth elements (REEs) is one of the most energy-intensive and polluting process of all metalextraction processes. The recycling process of REE in permanent magnets is also expensive, energy intensive and with a significant environmental impact.

•Rare earth elements are under extremely serious supply risk: they are extremely costly, subject to great price volatility, and prone to supply crises.

•REE magnets have a good magnetic performance, but they are not perfect: they decay easily, they are hard to recycle, and their efficiency decreases dramatically at elevated temperature. We cannot aim to make the transition to a green Europe, which requires transport electrification, power generation and smart facilities, if we do not find a way to develop permanent magnets without using rare earth elements.

INKNOMOVIE

Permanent magnets and applications

Magnetic separators

5

SOLUTIO N

HOW?

MISSION

Contribute to a green, sustainable Europe by developing an alternative to raw materials in the construction of permanent magnets and testing their performance in the electromobility sector PASSENGER proposes **improved strontium ferrite (Sr-ferrite)** and a **Manganese-Aluminum-Carbon (MnAIC)** alloy as a substitute to guarantee a sustainable production of permanent magnets in Europe: an alternative without critical raw elements, based on resources that are widely available in Europe, with enough research to provide a solid base for a successful transition from the lab to the industrial production in our Pilot Plants.

Challenges

1 **Substitution** of critical raw materials to be able to produce permanent magnets with European resources.

2 **Scaling up the newly developed** technologies, bringing them from the lab to the market.

PASSENGER

DDA IFAT

Cost-Benefit Analysis (CBA) of Passenger magnets

	Cost Structure for NdFeB Sintered Magnets: China						
	Comments	of materials	EUR per kg of alloy	EUR/kg	Weight%	Material	
Nd		48,2	6 8,94	36,96	24,2	Nd	
Pr	From NdPr	10	5 1,85	36,96	5	Pr	
Dy	From Fe-Dy	33,8	6,27	224	2,8	Dy	
Sub		92	17,06		32	SubTot	
Fe	Fe plus Fe-B	1.5	0.28	0.44	64.09	Fe	
Со	· ·	1,7	0,31	31	1	Со	
Sub		3,2	0,59		65,09	SubTot	
В	D from Form Donon	0	0.01	0.53	1.05	D	
С	B ITOIN FEITO-BOTON	0	· 0,01	0,53	1,05	Б	
Sub		0	0.01	0,5	0,01	C SubTat	
		U	0,01		1,00	500101	
Al		0	0.01	1.77	0.3	Al	
Cu		0.2	5 0.03	6.15	0.5	Cu	
Ga	i de la constante de la constan	3,6	0,68	135	0,5	Ga	
Nd		1	5 0,18	36	0,5	Nd	
Sub		4,8	0,89		1,8	SubTot	
Oth							
	Contaminants: Mn, O, S, etc				0,05	Other	
Tot	. Matavial asst	ELID /kg	10 ГГ		100	Tatal	
	Magnot manufacturing w/o matorials	EUR/Kg	18,55		100	TOLAT	
	Magnet manufacturing with materials	LONAKS	2,4				
	assuming material vield 86.6%	EUR/kg	23,82				
	Magnet Selling Price with 10% selling margin	EUR/kg	26,202				

Cost Structure for NdFeB Sintered Magnets: West							
Material	Weight%	EUR/kg	EUR per kg of alloy	% of materials	Comments		
Nd	24,2	47,5	11,5	49,1			
Pr	5	47,5	2,38	10,1	From NdPr		
Dy	2,8	288	8,06	34,4	From Fe-Dy		
SubTot	32		21,4	93,6			
Fe	64,09	0,44	0,28	1,2	Fe plus Fe-B		
Со	1	31	0,31	1,3			
SubTot	65,09		0,59	2,5			
В	1,05	0,53	0,01	0	B from Ferro-Boron		
С	0,01	0,5	0	0			
SubTot	1,06		0,01	0			
Al	0,3	1,77	0,01	0			
Cu	0,5	6,15	0,03	0,2			
Ga	0,5	135	0,68	2,9			
Nd	0,5	36	0,18	0,8			
SubTot	1,8		0,89	3,8			
Other	0,05				Contaminants: Mn, O, S, etc		
_							
Total	100		22,89	EUR/kg	Material cost		
			6,71	EUR/kg	Magnet manufacturing w/o materials		
			33.14	EUR/kg	Magnet manufacturing with materials		
				/ 18	assuming material yield 86,6%		
			43,082	EUR/kg	Magnet Selling Price with 30% selling margin		

ca 40% lower selling price

Ferrite (SrFe12O19) permanent magnets manufacturing process

(SrFe12O19) magnets

Manufacturing process of SrFe12O19 magnets

Description of the flowsheet of ferrite magnets

Image: https://www.magnet-sdm.com/2017/06/23/1186/

Ferrite (SrFe12O19) permanent magnet sintering

routo

- Process starts with the mixture of raw materials (SrCO₃, Fe₂O₃) followed by the pelletizing of the mixed powder.
- Pelletizing is performed to enhance the pre-sintered step which takes place in a rotatory kiln at 1250°C for 3h to form metallic oxides. Once pellets have been calcined, the pre-sintered pellets are ground into a coarse powder of 10 μm, and then, additives and water are added to the coarse powder and subjected to a secondary ball milling to obtain a fine slurry.
- Before the molding step, the slurry is dehydrated by centrifugation to the adjust the slurry concentration in 75wt% and optimize the wet pressing. The fine slurry is molding under a pressure of 10 MPa and a DC magnetic field of 50000 A, to obtain cylinders with a diameter of 50mm and length of 10mm.
- The compact magnets are placed in an oven at 75°C for 24h before being sintered in a wagon kiln at 1230°C for 8h to fuse particles together and form dense solid material.
- Finally, the ferrite magnets produced are magnetized until saturation and inspected to their sale. The magnetic properties obtained in this sintering route are the following: *Br* 4.7 kG, *H_c* 3 kOe and (*BH*)_{max} 4.4 MGOe.

Ferrite permanent magnet sintering route.

Magnetic properties of ferrite permanent magnet

Magnetic saturation **(Ms):** The point beyond which magnetic flux density in a magnetic core does not increase with an increase of MMF (NI) called the magnetic saturation of the core.

Magnetic remanence (**Mr**):Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed.

Coercivity ($H_{C):}$ A measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized.

Maximum energy product **(BH)**_{max:} Important figureof-merit for the strength of a permanent magnet material.

Composition	Sintering technique	Ms [emu g⁻¹]	Mr [emu g⁻¹] (Mr) [T]	Hc [kOe]	(BH) _{max} [MGOe]
SrFe ₁₂ O ₁₉	Conventional (Thermal sintering)		(0.38)	3.40	4.21
$SrFe_{12}O_{19} \cdot SiO_2$	Conventional (Thermal sintering)	54		1.70	
SrFe ₁₂ O ₁₉ · 0.2%PVA·0,6%SiO2	Ceramic processing route with two- step sintering	58	46	2.05	
SrFe ₁₂ O ₁₉	Microwave-assisted calcination route	54.8	29.52	5.30	
SrFe ₁₂ O ₁₉	Microwave sintering	50.4		5.50	
M- SrFe ₁₂ O ₁₉	Microwave sintering	64		1.20	
SrM ferrite fine particles (1.0%La,O,.0.1%C0,O,)	Spark Plasma sintering		(0.32)	4.10	2.29
SrFe ₁₂ O ₁₉	Spark Plasma sintering	73.6	65.8	2.10	2.75
SrFe ₁₂ O ₁₉	Hydrothermal: Sol-gel precursor coating technique	64.5		4.90	
SrFe ₁₂ O ₁₉	Hydrothermal	72.2	44.76	2.20	1.20

Most common techniques and the related magnetic properties

MnAIC permanent magnet sintering route

MnAlC and Nd-Fe-B

Description of the flowsheet of Nd-Fe-B and MnAIC magnets

Basic process steps for the Nd-Fe-B-based magnets

MnAIC permanent magnet sintering route A

- MnAIC permanent magnet is produced by a casting/hot extrusion method
- After melting the pure element in an induction furnace at 1400°C, the molten mixture consisting of 70%w/w Mn, 29.5%w/w Al and 0.5%w/w C is molded into the shape of cylinders with 40 mm in diameter and 30 mm in heigh.
- The ingots are homogenized at 1100°C for 2 hours to obtain the MnAlC-ε phase, followed by air quenching and tempering at 600°C for 20 min to promote the ε→τ phase transformation.
- The tempered pieces are extruded at 720°C with a pressure of 780 MPa to a diameter of 15 mm causing a final ingot long of 220 mm.
- Thereafter, each ingot is cut into pieces with a thickness of 20 mm to be subjected to free compressive working, reducing 20% the heigh of the cylinders.
- The final sintered Mn53Al45C2 permanent magnets, with a dimension of 15 mm in diameter and 16 mm in height, have the following magnetic characteristics: Br 4.7 kGs, Hc 3 kOe and (BH)max 4.4 MGOe

Magnetic properties of MnAIC bulk magnet

Magnetic saturation (Ms): The point beyond which magnetic flux density in a magnetic core does not increase with an increase of MMF (NI) called the magnetic saturation of the core.

Magnetic remanence (**Mr**):Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed.

Coercivity ($H_{C):}$ A measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized.

Maximum energy product **(BH)**_{max}. Important figureof-merit for the strength of a permanent magnet material.

Composition	Sintering technique	Ms [emu g⁻¹] (Ms) [T]	Mr [emu g⁻¹] (Ms) [T]	Hc [kOe]	(BH) _{max} [MGOe]
Mn ₅₃ Al ₄₅ C ₂	Casting + Annealing + Hot extrusion		(0.61)	2.70	6.16
Mn ₅₅ Al ₄₅ C ₁	Mechanical milling + powder compaction + Annealing	119	41	1.50	0.78
Mn ₅₆ Al ₄₄	Mechanical milling + Spark Plasma Sintering + Rapid thermal annealing	28		2.43	
Mn ₅₃₋₅ Al ₄₄₋₅ C2	Art-melting + Annealing + High energy ball milling + Hot compaction	(0.50)	(0.28)	3.30	0.60
Mn ₅₃₋₅ Al ₄₄₋₅ C2	Art-melting + Annealing + High energy ball milling + Microwave sintering + Compaction	94	39	1.10	0.50
$(Mn_{54}AI_{46})_{97.56}C_{2.44}$	Gas atomization powdering + annealing + Compaction	90	39	3.40	
MnAIC	Gas atomization powdering+ Annealing + Hot compaction	77	42.3	3.61	1.38
(Mn ₅₄ Al ₄₆) _{97.56} C _{2.44}	Melting + Melt-spinning + Annealing + Crushing + Compation	122		1.30	
Mn ₅₄ Al ₄₄ C ₂	Melting + Melt-spinning + Mechanical milling + Spark Plama Sintering	(0.55)	(0.31)	1.80	

Most common techniques and the related magnetic properties of MnAIC bulk magnet

Assessment of environmental

- The lowest impact of ferrite was estimated on the impact categories: climate change, particulate matter and resource use, fossils
- Impact saving around 35% of sintered ferrite magnets
- The environmental footprint confirms the raw material supply issues, mainly for MnAIC magnets
- The highest impact of ferrite manufacturing in the category of ionizing radiation is justified by the higher electricity consumption of ferrite production than MnAIC one
- The effect on ionizing radiation-human health is caused by the radionuclides produced by both the nuclear energy production, and the mineral oil gas extraction, used as energy carrier

Environmental impact assessment of manufacturing processes

n

Ferrite

Human toxicity, cancer - total [CTUh]

NdFeB

1.6E-03

5.0E-06

0.0E+00

Ferrite

Human toxicity, non-cancer - total

[CTUh]

MnAlc

NdFeB

comparison among sintered ferrite, MnAIC and NdFeB magnets

MnAlc

Eutrophication, terrestrial

NdFeB

Environmental impact assessment of manufacturing processes

- The environmental burden of Nd-Fe-B far exceeds (also many orders of magnitude in the categories of eutrophication freshwater, ozone depletion and human health the other technologies in all the impact categories considered.
- The results show a possible emission saving of 93% and 87% by using sintered ferrite and Mn-Al-C, respectively, in the category of climate change.
- This advantage is explained by the avoided use of Nd and Dy which cause about 50% of the whole process emission of CO2 eq. Their contribution on the process impact reach up to 98% in the category of eutrophication marine.

Thank you!

